tactn001のブログ

大学受験予備校で数学の講師をしております.

2017入試問題のメモ9(関西の私立大学)

問題は↓

過去問題へのリンク(関西地方) - tactn001のブログ

 

データの分析を出している大学が多い印象

(いくつかのデータを与えて,平均,分散,四分位範囲を求めるなど.相関係数はボリュームの関係からか少ない)

 

長浜バイオ大学

前期B 2/5

1(3) SCIENCEでCが隣り合わず,Eも隣合わない順列の個数

2 円に原点から引いた接線と円で囲まれる図形の面積

4 $ S_{n+1}-2S_n=3^n $から$ a_n $

後期3/11

4 正三角形の内部で垂線を次々に下ろす話

 

びわこ学院大学

2 チェバの定理の証明(ノーヒント)

3 6×6の最短経路で通れないところが沢山ある問題

 

京都産業大学

1/25 $ y=sin x,\ y=\sin (x-a)$と$ x $軸とで囲まれた図形の面積の極限

 

京都女子大学

1/29

1(2) 連続した3個の奇数の平方の和に1を加えた数が12で割り切れ24で割り切れないことの証明

(3) 男子3人,女子4人で男子が隣り合わない円順列

 

1/30

1(1) $ x+y+z=6,\ xy+yz+zx=8 $で$ x^3+y^3+z^3-3xyz $

(3) BC $=6 $,CA $=5 $,AB $=7 $,∠Aの二等分線ADの長さ

3 ヒポクラテスの定理

 

1/31

2 ガウス記号のいろいろ

3 $ y=x^4-6x^2+8x $と原点における接線で囲まれる図形の面積

 

京都精華大学

4 ややボリュームのある図形問題(旧課程のセンター的)

 

京都薬科大学

例年1問は難しい問題が出ていたが,今年はすべて標準的.ただし,時間に対してボリュームが非常に多い.

 

同志社大学

2/4 理系全学部 2 斜軸回転 4 $ c_{n+2}=\dfrac{c_{n+1}(c_{n+1}+1)}{c_n}$ やや難

2/5 文系1(2) 正$ n $角形の頂点結んで鈍角三角形ができる確率など 同15お茶大他

2/6 文経済 1 $ \text{PL}^2+\text{PM}^2+\text{PN}^2 $ 17早大商と同じネタ 3 面倒な絶対値積分

2/7 理系 1(1) $ \displaystyle \int_{0}^{\frac{\pi}2} |\sin x-\lambda \cos x\ |\ dx $の最小値 (頻出)

2/7 文系1(1) $ n $個のデータの分析

2/8 1(1)円順列 2 $ 324 \mid n^3-n $となる条件 3 $ y=| x^2-1 | $と接線で囲む面積

2/9 文系 三角形ABCの内心Iで$ \dfrac{\text{AI}}{\text{AP}}\cdot \dfrac{\text{BI}}{\text{BQ}} \cdot \dfrac{\text{CI}}{\text{CR}}$の最大値 やや難

2/10 1(1) $ \dfrac{d^n }{dx^n} (e^x \cos x) $  3 回転放物面と球 やや難

4 $ \displaystyle \lim_{n\to \infty} \int_0^{\frac{\pi}4} (\cos^2 nx-\cos^4 nx)\ \log \left(1+\dfrac{4}{\pi} x\right)\ dx $ やや難

 

同志社女子大学

薬1/26 2(1) $ 2(1+i)x^2-(3-i)x+1-i=0 $の実数解 類17工学院大

 

立命館大学

2/1 全学文系 2 複利計算

2/2 薬 1(3) 3,4,5の三角形でI,O,Hを頂点とする三角形の面積

2/2 全学理系 1 $ \beta $関数

2/2 全学文系 三角形ABCの辺上にP,Q,R $ \triangle \text{PQR}=\dfrac14 \triangle \text{ABC}$となる条件

2/3 全学理系 4 カタラン数(経路)

2/3 全学文系 2 複利計算

2/4 全学文系 3 面倒なトーナメントの確率

2/7 学部個別理系 1 3次方程式の判別式 3 円の列で$ \dfrac1{\sqrt{r_n}}$がフィボナッチ

2/8 センター併用 2 複素数と確率 4 $ \sin x $の逆関数積分

3/7 薬後期 2 $ |x^2-x-6|=ax+b $の実数解の個数

 

龍谷大学

1/30 4 $ e^{2x}-5e^x+2x+7=a $の実数解の個数

 

大阪医科大学

前期 5 本格的な複素数平面

後期 2 ヤングの不等式の類 4 球の分割 5 図形 全体として難しい

 

大阪大谷大学

前期 3 $ f(x)=x^3-9x^2+24x-16 $の$ x\leqq a $における最大値が極大値と一致する$ a $の範囲

中期2(3) 座標 折れ線最短 3 $ y=x^2 $と法線で囲まれる面積の最小(頻出)

 

大阪工業大学

1/26 1(3) 中項定理 (4) $ 8x^2-4x-1=0 $の解を$ \cos \alpha ,\ \cos\beta $として,$ \sin \alpha \sin \beta $の値

他にもチョイチョイ捻りがあって,侮れないセット

 

大阪歯科大学

前期 1(4) 期待値(出題範囲内

2 $ x^2+y^2=25 $に内接する格子点三角形の個数 やや面倒

 

大阪樟蔭女子大学

1/19 3 7個のリンゴを3人に分ける重複組み合わせ 4データの分析

1/20 2 立方体を4色で塗り分け

3 第一余弦定理から三平方の定理を示す

2/4 4 $ 66x+53y=1 $の整数解

 

大阪電気通信大学

1/31 1(2)中項定理 4 3次関数の極大点と極小点の中点が曲線上にあることの証明

 

大阪物療大学 90分のセットとしては充実しすぎてとても大変かと

1(8) $ x(x+2)(x+3)(x+5)+8 $の因数分解

2(3) $ x^2-3ax+a=0 $の2解が$ \sin\theta,\ \cos\theta $

3 棒に錘をつるす問題.重心が絡み途中から確率分布(誘導はあるので範囲内で解ける)

4 球に内接する円錐の体積の最大値

5 円と直線に接しながら動く円の中心の軌跡

 

大阪薬科大学

A 1(2) $ \sqrt{4n^2+29}$が整数となる$ n $

 

関西大学

2/1 文系 1 3次方程式の解と係数の関係(導出あり)3 $ \dfrac16 $公式の導出

2/1 総合情報 3 空間内の正八面体の3つの頂点が与えられて残りを特定

2/2 2 内分点を次々にとって座標の漸化式 3 $ \sum \sin \dfrac{k\pi}n $の周辺

2/4 文系 1 $ a_{n+1}=3a_n+n^2+2n $  2 円束(根軸)

2/5 総合情報 2 三角形の重心を通る直線で三角形を分割

2/5 理系 4(1) KAISERSの順列 (アメフト部の名前)

2/6 文系 KANNSAIの順列

2/7 理系 1 パラメタ曲線 2 二項定理(帰納法

2/7 文系 2 外心の位置ベクトル 類 17慶應理工

2/8 文系 $y=x^3+3x^2-9x+6 $に点$ (0,\ p)$から3本の接線

 

関西医科大学

前期 1(2) $ \varphi (2017) $ 2017が素数であるという但し書きなし

2 確率漸化式

3,4も重たい

後期 3 確率の大小比較 4 円柱の一部の体積(難)

 

近畿大学

医 1/22 1 立方体の塗り分け 同 16順天堂大 難問 3 円に内接する四角形の面積の最大値 類16北里大・医

理系 1/28 1(3) ベルヌーイシフト写像 3 扱いにくい初等幾何

2/11 理工3 $ C:y=(x-2)^2+3 $と$ l: y=\dfrac{x+7}2 $で囲む図形を$ l $の周りに回転

3/8 理系1(2) 循環小数の難問

3/8 医 二等辺三角形で$ \cos A+\cos B+\cos C,\ \dfrac{r}{R}$の最大値

 

摂南大学

1/23 理工,薬1(3) 桁数,最高位の数字 

(4) 空間内で正四面体の3頂点が与えられて,もう一つを特定

 

梅花女子大学

1期A 4 2つの円の割線(17IMO 第4問の入り口になる問題)

 

関西学院大学

2/1 理系 1(2)4人じゃんけん

2/1 文系 2(1) 整式の割り算(余り)

2/4 文系 2(2) $ a_{n+1}=\dfrac{3a_n}{2a_n+4} $ 3 $ \displaystyle \int_{a}^{a+1} |x^3 -4x|\ dx $

2/5 理工2 円束

 

甲南大学

2/1 2 さいころ$ n $回投げて3の倍数が奇数回でる確率

5 四面体で体積比 類98静岡大

 

神戸学院大学

1/30 1(2) $ 2x+3y=60 $の整数解について

 

神戸国際大学

3 $ \sin\theta+\cos\theta=\dfrac12 $から$ \tan\theta-\dfrac1{\tan\theta}$など

6 正八面体の体積

 

神戸薬科大学

前期 6 検査の精度

中期 2 $ a^2-b^2 =p $のとき,$ a,\ b $を$ p $で表す 4 細胞分裂の漸化式

7 $ \text{gcd} (2^{100}-1,\ 2^{20}-1) $

 

姫路獨協大学

A 4 三角形の各辺を1:2に内分 

B 2 円に内接する四角形,対角線のなす角の正弦

 

兵庫医科大学

2 回転放物面の表面積(難)

3 ジューコフスキ変換 類17琉球

 

武庫川女子大学

1/24 2(4) 星の明るさ(等級)常用対数

3(1)球の表面積や体積の増加率(微分係数